The limit points of eigenvalues of graphs
نویسندگان
چکیده
منابع مشابه
On the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملOn the limit points of the smallest eigenvalues of regular graphs
In this paper, we give infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [−1− √ 2,−2) and also infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [α1,−1− √ 2) where α1 is the smallest root(≈ −2.4812) of the polynomial x3 + 2x2 − 2x − 2. From these results, we ...
متن کاملOn the eigenvalues of non-commuting graphs
The non-commuting graph $Gamma(G)$ of a non-abelian group $G$ with the center $Z(G)$ is a graph with thevertex set $V(Gamma(G))=Gsetminus Z(G)$ and two distinct vertices $x$ and $y$ are adjacent in $Gamma(G)$if and only if $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.
متن کاملCOMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
متن کاملLimit points for normalized Laplacian eigenvalues
Limit points for the positive eigenvalues of the normalized Laplacian matrix of a graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for rand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1989
ISSN: 0024-3795
DOI: 10.1016/0024-3795(89)90485-0